Differential Geometry

Supplementary Examination

- 1. Verify that the following statements are true or false (without justification) (2+2+2+2+2=10 points). (i)-ydx + xdy is a non-vanishing 1 form on \mathbb{S}^1 . $(ii)\mathbb{RP}^2$ is orientable. (iii)There exists a 2-form α on \mathbb{R}^4 such that $\alpha \wedge \alpha \neq 0$. (iv) Mobius Strip M can be written as $M = f^{-1}(c)$, where $f : \mathbb{R}^3 \to \mathbb{R}$ is a smooth function and c is a regular value of f. $(v)\mathbb{R}^2$ and $\mathbb{S}^1 \times \mathbb{R}$ have same Gauss curvature.
- 2. (10 points) Let V be a finite dimensional vector space and $f, g: V \to \mathbb{R}$ be two non-zero linear functionals such that $\ker(f) = \ker(g)$. Sow that there exists a non-zero constant c such that g = cf.
- 3. (10 points) Compute $d(f^*\omega)$ and $f^*(d\omega)$ where $f : \mathbb{R} \to \mathbb{R}^2$ with f(x) = (x, -x) and $\omega = dx + dy$. Check that $d(f^*\omega) = f^*(d\omega)$.
- 4. (10 points) The curve $\gamma : \mathbb{R} \to \mathbb{S}^1 \times \mathbb{R}$ defined by

 $\gamma(t) = (\cos t, \sin t, t)$

is a geodesic in $\mathbb{S}^1 \times \mathbb{R}$.

5. (10 points) Give an example of a 2-form ω on \mathbb{R}^3 such that if \mathbb{S}^2 is the unit sphere, the integral $\int_{\mathbb{S}^2} \omega \neq 0$.